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Static-pressure probes that are theoretically insensitive 
to pitch, yaw and Mach number 

By A. M. 0. SMITH AND A. B. BAUER 
McDonnell Douglas Corp., Douglas Aircraft Co., Long Beach, California 

(Received 5 January 1970) 

The idea of distributing static probe cross-sectional areas so as to render the 
probe insensitive to Mach number is combined here with that of using non- 
circular cross-sections to render probes insensitive to yaw and angle of attack. 
Appropriate non-circular cross-sections are described in detail, and a general 
means of designing blunt or slender probes to have zero sensitivity to yaw and 
angle of attack in potential flow is described. Four experimental probes have 
been tested, and test results are presented. These results show that the probes 
are quite insensitive to yaw and angle of attack within certain limiting angles, 
which are assumed to correspond to the onset of flow separation. 

1. Introduction 
An ideal static-pressure probe should show the true static pressure in a fluid 

stream independent of the stream Mach number, Reynolds number, or direction 
vector. In  practice this ideal is closely approached only when the ReynoIds 
number is large, when the Mach number is not close to 1, and when the flow direc- 
tion is the same as or close to the main longitudinal axis of the probe. An earlier 
paper (Hess & Smith 1967) describes static-pressure probe studies and testing 
for the case of zero angles of attack and yaw between the probe axis and the flow 
direction. This work was confined to probes having a circular cross-sectional 
shape and longitudinal area distributions derived both from subsonic theory and 
supersonic slender-body theory. The supersonic theory was used to design the 
probes from the nose back to the static-pressure hole locations. Since the area 
distribution downstream of these holes should not affect static pressure at the 
holes at  supersonic speeds, subsonic theory was then used to determine the 
downstream area distribution such that the probes should read the true static 
pressure at  subsonic speeds. 

Faired results of numerous tests at  zero angle of pitch and yaw for Mach 
numbers up to more than 3.0 are shown in figure 1. These results are taken from 
figure 8 of the Hess-Smith paper and apply to one particular round probe 
identified as probe VII. In  addition, however, a few supersonic test values for 
probe IX, provided by Bauer (1 969) are shown. This probe is one of the non- 
circular designs that forms the subject of this paper. These results demonstrate 
the great Mach number insensitivity. The errors indicated are mostly down in 
the noise level of the tests. But if the Cp errors are believed t o  be true, procedures 
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for eliminating them are straightforward and indicated briefly by Hess & Smith 
(1967) in a footnote. The present work makes use of the earlier longitudinal 
area distribution work, but utilizes non-circular cross-sectional shapes to reduce 
probe sensitivity to angle of attack and yaw. 

O'02t  0.04 

FIGURE 1. Faired results from a largo number of tests in a variety of wind tunnols on probe 
VII, a probe of round cross-section. Probe VII: -, pointed nose; ---, Pitot nose. Since 
the probe is designed to read C, = 0, C ,  is just the error. Some additional test data are shown 
for probe IX, a probe having the same longitudinal area distribution (equation (15)) but a 
non-circular cross-section. Probe IX: 0 0, pointed nose; 00, Pitot nose. 

FIGURE 2. Probe XI and general co-ordinate system. The figure is an IBM 2250 perspective 
plot of the probe XI as defined in 3 4. The white dot is an orifice location. 
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2. Development of probe cross-section shapes 
The general probe co-ordinate system is defined in figure 2. The probe is 

aligned with the x axis and the relative wind direction is defined by ZV,, mV,, and 
nV,, the components of the free-stream velocity V, in the 2, y and z directions 
respectively. Hence Z2 -t- m2 + n2 = 1. These components are used to define the 
angle of attack a and yawp as follows: 

a = sin-'m, p = sin-l n. (11, (2) 

First, it is instructive to consider the problem of a very slender probe, one 
that is long in the x direction, so that the flow in the cross plane may be taken to 
be two-dimensional. Furthermore, let the cross-flow Mach numbers rnV,/a, and 
nV,,la, be much less than 1 so that two-dimensional potential-flow solutions are 
applicable. Now if the slender body has a 'proper' area distribution S(x)  such 
that the probe pressure coefficient at  the orifice or static-pressure hole cross- 
section plane x = xo is zero for a and p = 0 (see Hess & Smith 1967), then the 
probe pressure coefficient will be different from zero only because of the cross 
flow. For a cross-flow surface velocity V ,  the local pressure coefficient is 

c,, = 1 - ( V y v : ) ,  (3) 

based on the cross-flow velocity V,  = Vm(m2 + !a2)*. In  general, a probe may have 
several holes numbered 1 to s on the plane x = x,; then the cross-flow pressure 
coefficient Cpc may be defined as the average of these coefficients. This average is 

(4) cpc = I; CPQ -. 
i=1 S 

Hence, for a slender probe with a proper area distribution oriented at  small 
angles a and p to the airstream, the probe pressure coefficient based on V,  is 

1 s  cpc = 1-- c V? SV,2 i=l  2' 

For an ideal probe, Cpc = 0, for all combinations of a and 8. Therefore, possible 
probe cross-sectional shapes may be judged by this criteria. Since the simplest 
cross-sectional shape is the circle, this may be considered first. The surface 
velocity in potential flow is 

V = .2~,(msin6--ncos6), (6) 

where 6 is the angular co-ordinate t a r 1  ( - z/y), as shown in figure 3. If n = 0, 
then any combination of holes located at  6 = 30", 150", - 30", or - 150" will 
result in V z  = V: for all holes, and in Cpc = 0. However, for an actual probe the 
relation (6) is modified by viscous effects such that the holes should be located 
in the range of 8 = 30" to 40" or - 30" to - 40". Now when the cross-flow direction 
is changed t o ,  say m = 0, and n + 0, the above suggested hole locations do not 
result in CPc = 0. With purely potential flow it is not possible with a circular cross- 
section to locate a set of holes such that Cpc = 0 for arbitrary n and m. With 
viscous effects added, the situation is not much improved. Therefore, a search 
has been carried out to determine what non-circular shapes may be suitable. 

33-2 
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Possible cross-sectional shapes may be classified by the number of pressure 
holes used. When configurations having one, two or three pressure holes were 
investigated by the authors, no suitable shapes were found. In fact, if one limits 
the investigation to shapes which are described by the radius vector r(6) such 
that they are symmetric in the sense that 

and r (6) = r (  -@, 

FIGURE 3. Probe cross-section showing definition of 8. 

Y 
t 

FIGURE 4. ‘ Rounded-square’ cross-section shape, a = 0-1745 (equation (9)). 
Dots denote pressure holes. 

then it is possible to show for the potential-flow situation that no suitable shapes 
are possible for s = 1, 2,  or 3. However, it can be shown that such symmetric 
shapes are possible for s = 4, 8,12, etc. The case of s = 4 is illustrated in figure 4. 
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Since it is desirable in practice to keep the number of holes to a minimum, s = 4 
was chosen for all the following work. 

The problem of shaping can be attacked in several ways. One is as follows. 
Because s = 4, double symmetry of the shape exists. That is, the probe cross- 
section will have mirror symmetry about both they and the z axis, as is illustrated 
by figure 4. Suppose further that the cross-sectional shape looks the same to 
cross-winds of either the a or the /3 types. Then, in order that the probe be 
insensitive to cross-wind velocities, the orifices must be located on 45" lines, 
because, whether the cross-flow component is of the a or p type, the probe appears 
the same to the wind. The shape then is so selected as to make CPc = 0 at these 
orifice points. 

This has been done in figure 4, which illustrates the so-called 'rounded-square ' 
,shape. It is a, member of the family 

r/R = 1 -a  sin2 20, (9) 

where R is the maximum cross-section radius. The pressure holes are located at 
8 = in, Qn, in and pn. For a cross flow in either the y or z directions (corresponding 
t o p  = 0, a =/= 0 and a = 0, p =/= 0, respectively) by symmetry the surface velocity 
squared on hole 1, VZ,, is equal to that at  the other holes, VE, T'i and V;. When the 
parameter a = 0, V: -+ 2V:. As a increases, VZ, decreases. The desired value, 
VZ, equals Vt ,  was reached at a = 0.1745 (Smith & Brumby 1968). This number 
was determined using a potential flow computer program (Hess & Smith 1966) 
for several values of a. 

Since the above flow is potential, superposition of the flow velocities for cross 
flows in the y and z directions is permissible. By this means one may show that 
CPc = 0 for any combination of a and p. 

Subsequently the question arose as to whether the above shape could be 
generalized and still satisfy the condition CPc = 0 for all combinations of a and p. 
'This indeed has been found to be possible with shapes of the form 

y/R = -(1-asin228)cos8, (10) 

z/R = r( 1 - a sin2 28) sin 8. (11) 

This form was written using y and z and the parameter 8 rather than the radius 
vector r = (y2+z2)A in order to avoid the confusion that would otherwise arise 
because of the fact that r points in the direction 0 = tan-l( - z/y) rather than 
the 8 direction. 8 is related to y and z by 8 = tan-l( - z/vy). 

Such a shape is shown in figure 5 for 7 = t and a = 0.1822. This combination 
results in Cpc = 0 for all combinations of a and p. The pressure holes had to be 
located a t  8 = & 40.4" and at  f 139-6". Figure 5 shows the section pressure 
distribution for cross flows in both the y and the z directions. This shape was 
found by systematically varying a. As a was increased, the crossover point of 
the V, and V, curves came at a more positive C,, and vice versa. Since the V,  
curve must go to C, = 1 at 8 = 180" and to a negative value of C, at 8 = 90" 
(at least for a > 0)) and since the 5 curve must go to C, = 1 at 8 = 90" and to a 
negative value of C, at 8 = 180", the V,  and V, curves must have a crossover 
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point between 6 = 90" and 6 = 180'. Therefore, the crossover point at C, = 0 
might have been anticipated for some positive value of a. 

-6 -71 

FIGURE 5. ' Rounded-diamond' cross-section shape m used on probe X. Calculated pressure 
coefficient distribution. 6' is an angle parameter, not the polar co-ordinate. See (10) and (1  1). 
-, two-dimensional cases; 0 OA A, three-dimensional cases. 

A third set of cases were computed for = 9, and the condition n = 0-1975 
142.8'. The was required for Cpc = 0 with holes located a t  6 = 5 37.2' and 

general character of the calculated pressure distributions is much like figure 5. 

3. Three-dimensional probe analysis 
Since the flow over practical probes is almost always three-dimensional to some 

degree, a three-dimensional flow analysis is useful. The analysis presented here 
demonstrates that probes with rather strong three-dimensional effects may be 
designed to read the exact static pressure for potential flows. For such flows, 
the numerically exact computing method of Hess & Smith (1966) has been 
essential for calculating probe pressure coefficients. Since numerically exact 
pressure calculations cannot be done in general for compressible flows, probe 
shapes for compressible flows must be slender so that slender-body theory can be 
used for the analysis. 

In an actual probe viscous effects must be considered. These are not significant 
at  small values of a and p ,  but can be considerable at  large angles, as shown in 5 5. 
At large angles, flow separation usually causes cp t o  be negative, where cp is 
defined as the average of the hole pressure coefficients. In  an effort to avoid this 
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separation, a study was carried out to determine whether the probe orifices could 
be located close to the probe nose where the separation effects should be much 
less. Such a location brings in strong three-dimensional effects, and the probe is 
not slender. 

The possibility that a non-slender probe may read the exact static pressure in 
potential flows can be studied as follows. As before, assume that the probe has 
four pressure holes and let ul, vl, wl, be the x, y and x velocity components at  
hole 1.  Let V, be normalized to be 1. Then because of the principle of superposition 
of potential flow velocities we may write 

u1 = allk+al,m+al,n, 

v1 = a,,k+a,,m+a,,n, 

w1 = asl I + a,, m + n, 

or in matrix form v, = AO. 

Similarly, for the three remaining orifices 

V, = BO, V, = CO, V, = DO. (1% c, 4 
For probes of interest we require symmetry with respect to the xy and the xx 
planes. Because of this symmetry we can show that the components of matrices 
B, C and D are the same as those in A except for appropriate changes in sign. 
For example, figure 6 shows a probe cross-section and an onset flow component m. 
From the figure it is clear that the resulting v-velocity components at the four 
orifices are in a direction corresponding to a,, = b,, = c2, = a,,. It is also clear the 
w-velocity components are in a direction corresponding to 

as, = - b,, = c3, = - d,, . 
From this type of reasoning we can show that 

i( V;  + V i  + Vt  + F'i) = PV; + m2 VE + n2 VE, 

where V,, V, and V, are the three velocity vectors at  any of the pressure holes for 
the three different flows each having V, = 1 and having the onset direction com- 
ponents Z, m and n equal to (1,0,0),  (0, 1 , O )  and (0,0, l), respectively. That is, 

The average of the hole pressure coefficients is 
- 
C9 = l -*(V?+ V i +  v;+ Vi) .  

Then it follows that 

Cp = 1 - V ; + m z ( ~ ; -  V;)+n,(V;- VE). 

Hence, for V$ = V i  = Vz = 1 the probe will have Cp = 0. 
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In order to design a probe to meet these conditions, there must exist three 
independent probe parameters that can be varied as inputs to the potential 
flow computing program which calculates V i ,  Viand V;. This has been done using 
the family of probe shapes defined by 

y = yl(x) (1 - ax2 sin2 20) sin 0, 

x = yl(x) (1  - ax2 sin2 20) cos 0, 
(14a) 

(14b)  

where 

and 

Y 

t 

m 

FIGURE 6. Velocity vectors a t  the four orifices and in the (y, z )  plane 
generated by a y onset flow m. 

In geometric terms each member of this family consists of a circular cylinder 
with a diameter of 1 for x 2 0 and a modified half ellipsoid with a nose at  x: = - 1 
which fairs smoothly into the cylinder at  x = 0. The ellipsoid is modified in the 
sense that its cross-section shape has been changed from circular to aformlike that 
illustrated in figure 7. This cross-section shape change was accomplished without 
any corresponding change in the area X(z). The cross-section shape can be varied 
through the parameter a. The four pressure-hole locations are specified by values 
of xo and tl, . The three parameters a, zo and 8, are all that need to be varied to 
satisfy the conditions V ;  = V$ = VE = 1. 

The above family of shapes was input into the potential flow computing pro- 
gram with the parameter a = 0.45, 0.50 and the 0.465. This last value satisfied 
the requirement V i  = Vg = V i  = 1 for holes located at  zo = - 0.76 and at  
6" = k 45' and f 135". This probe is illustrated in figurc 7 .  
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Such a blunt probe would need to be built with special care in contouring and 
hole location, inasmuch as aCp/ax, for such a blunt probe is much larger than 
with a slender probe. Hence, any errors in hole location will have a much larger 
effect on the probe reading than with a slender probe. 

FIGURE 7. Blunt probe developed from potential flow theory with holes located near the 
nose. Figure is an IBM 2250 perspective plot. Black dots are orifice locations. 

-0.07 - 

-0.06 - 

-0.05 - 

-0.04 - 
- 
c, 

-0.03 - 

-0.02 - 

-0.01 - 
a=0.465, x,= -0.760 

0 I I I 1 I 
0 2 4 6  8 10 12 14 16 

a or /I (degrees) 

FIGURE 8. Potential flow pressure coefficients on two blunt probes; a = 0.465 corresponds to 
the probe shown in figure 7; a = 0 corresponds to the related body of revolution. The profile 
shape sketched above has the same area distribution as both the a = 0.465 and the a = 0 
probes. 
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For this shape the angle between the x axis and the probe surface at  the pressure 
holes is 33-9 degrees. Therefore the probe would be expected to operate without 
appreciable flow separation at  much larger angles of a! and ,4 than is possible 
with a very slender probe. 

The advantage obtained by the contouring of the blunt probe as shown in 
figure 7 may be better appreciated by looking at the that would result if the 
probe were changed to a body of revolution by setting a = 0. Figure 8 shows 
cp calculated by the method of Hess & Smith (1966) for a = 0.465 and for a = 0. 
The change from 0-465 to 0 required a corresponding change in the hole station 
from xo = - 0.760 to x, = - 0.787. The four holes in both cases were located at 
8, = & 45" and 135". This shows a cp error of - 0.0295 for the circular probe 
with a! or ,4 equal t o  10". 

Other blunt probe shapes are possible. For example, the ratio 2 of the ellipsoid 
length to diameter given by (14c) can be arbitrarily changed as long as corre- 
sponding values of a, 2, and 8, can be found which result in F'z = F'; = T'; = 1. 
Unlike the pointed slender probes, these shapes are expected to be sensitive 
to Mach number. 

4. Experimental probes 
Four experimental probes have been built and tested. These probes are much 

more slender than the blunt probes just discussed. Each of the experimental 
probes has the same area distribution X(x) and length as probe VII  (Hess & 
Smith 1967), but whereas probe V I I  has a circular cross-section, the newer 
probes have cross-sections of the form given by systematically varying the 
parameters in equations (10) and (1 1) .  These are given in table 1. For probe VII 
the angle 8, was optimized by extensive experimentation. On the others it is 
theoretical. 

Probe 9 a Opre~ewe boles = ' 0  

VII  1~0000 0~0000 f 40.0" 
IX 1~0000 0.1745 & 45.0°, 135.0' 
X 0.6667 0.1822 - + 40.4", 139.6" 
XI 0.5000 0.1975 f 37.2', 142-8" 

TABLE 1. Probe geometric parameters 

The profile equations giving the mean radii ra(x)  of each of the probes are 

r,(x) = rl(6.094ta- 6.281t3- 5-219t4+ 10.406t5- 4-000t6)* for 0 G t G 1, (15a) 

r,(x) = r l [  1 + 0.7 (2) + 1.9 f4)3- 1-6 f34]1 for 1 G t < 2.4, (15b) 

ra(x) = 2b1 for 2.4 < t ,  (15c) 
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On each of the probes the holes were located x = I, = 3-125in. from the sharp 
nose tip, which was located a t  x = y = z = 0. The mean diameter d, a t  the holes 
was 0-625in. on each probe, giving I Jd ,  = 5.0. The pointed tips on probes X 
and X I  were slightly rounded so that the round nose was a t  x = 0.185in. 

Each of the probe noses is removable, and a second nose having a Pitot tube 
tip can be installed instead of the plain nose. On probe I X  the Pitot tip hole is 
0-187in. diameter with sharp lips which fair smoothly into the probe contour. 
On probes X and X I  the Pitot tip holes are not round, being contoured to the 
probe cross-sectional shape and having mean diameters of 0.187in. The Pitot 
noses were cut off at x = 0.437 in. where the area X(x) is equal to that of a 0.187 in. 
diameter hole so as to provide space for the Pitot holes. 

On each of the probes except VII the four static pressure holes, which are 
each 0.062 in. in diameter, lead to a common plenum chamber inside the probe. 
The plenum chamber does the job of averaging the pressures from the four holes, 
and the plenum pressure only is measured. Probe I X  was first built with separate 
tubes routed to each pressure hole. When the pressure readings from these four 
tubes were averaged mathematically and later compared with measurements 
using probe I X  modified for plenum averaging, the two methods gave very good 
agreement (see Smith & Brumby 1968). This held true for pitch and yaw angles 
as large as 15". 

On probe VII the pressures a t  the two holes were measured separately and 
then averaged mathematically. 

4 5 6 I 8 
x (inches) 

Static-pressure probes 523 

where t = (x/3*125h.), rl = 0*3125in., S(z) = nr;(z). (15d,e,f) 

This basic profile is illustrated in figure 9. 

equations (10) and (11) by 
At  any station z the mean radius ra is related to the reference radius R of 

- = [y(l  -a+$a2)]-4, 
ra 

which is a direct consequence of equations (lo), ( l l ) ,  (15f) and the fact that X(z) 
is defined as the cross-section area. Since we can take y 6 1 without loss of 
generality, 2R is the major axis length of any cross-section, and 2Ry is the minor 
axis length. 
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0.05 L , 

5. Experimental results 
Probes VI I  and IX  were tested in a subsonic stream at M, =0.2 and a t  a 

Reynolds number per foot of 1.4 x lo6. Figure 10 shows cp measured on probe 
VII ;  figure 11 shows cp measured on probe IX. Note the very flat portions of 
figure 11 for p = 0" and p = 5" and for - 6" < a < 6". In  this region the probe 
cross flow does not result in a significant change in cp with a or p, At larger 
angles there evidently is some boundary-layer separation, as may be judged by 
the well-known fact that when separation occurs it is generally on the lee side 
of a body where the local pressure is decreased from the potential flow value. 

V, sin,!? 

V,  sina I Yaw angle, ,&(degrees) 

0 n 
A -n 

I - -  n 

Angle of attack, u, degrees 

FIGURE 10. Pressure coefficients on probe VII oriented as shown with both orifices averaged 
together. Prove VII is the only experimental probe having a circular cross-section. 

-0.10 c 
Yaw angle, ,9 (degrees) 

T-i-l- 
Is, - t- 

0.05 'I -15 -10 -5 0 5 10 15 20 25 30 

Angle of attack, a, degrees 

FIGURE 11. Pressure coefficients on probe IX with the pointed nose 
oriented as shown with all orifices averaged together. 
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Such a decrease appears on figure 11 as a negative c,. Note that figure 10 does 
not show a flat or insensitive region similar to figure 11. This demonstrates the 
main point of this paper-that a proper shaping of the probe cross-sections will 
result in very little probe sensitivity to pitch and yaw. 

In  figure 12 constant contours of Cpl are plotted for probes VI I  and IX. Here 

CPl is defined as - -  
CPl = c, - C,(a = p = O ) ,  (16) 

so that the figures are restricted to showing only the effects of a and p. The 
c, (a = /3 = 0 )  for probe VII was discussed fully by Hess & Smith (1967); this 
quantity is generally quite difficult to measure with precision because the tunnel 
C, is not usually known with great precision. Probes IX, X and XI  are believed 

a (degrees) 30 

- 10 L 
a (degrees) l5 1 

L 

-15 

-15L - 1 5 1  
FIGURE 12. Lines of constant CP1 for various probes. (a )  Conventional probe with pointed 
nose (probe VII). ( 6 )  Probe I X  with the pointed nose. (c) Probe I X  with the Pitot nose. 
(6) & ( c )  Cp1: A, -0.0025; 0, -0.005; 0, -0.01; V, -0.02. 
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to have the same "(a = p = 0) as probe VII, but only C,, will be discussed 
further here. Figure 12 shows clearly that probe VII is much more sensitive 
to p than is probe IX.  

L-lo 

-1  

FIGURE 13. Lines of constant cpl for probe Ix. 
(a)  With pointed nose M = 1.48, Relft = 3.24 x lo6. 
(b) With Pitot nose M = 1.48, Relft = 3.24 x lo6. 
(c) With pointed nose M = 3.00, Relft = 2.17 x lo6. 
(d )  With Pitot nose M = 3.00, Relft = 2.17 x lo6. 

Cp,: 0, -0.005; 0, -0.010. 

When probes VII and IX were operated at M, = 0-2 with the pointed tips, 
the boundary layers were laminar, as was checked using a small tube inserted 
into the boundary layer and attached to a stethescope. When the pointed nose 
was replaced by a Pitot nose on each probe, the boundary layer became turbulent, 
" ( a  = p = 0) became more positive by an increment of 0.002. Contours of C,, 
for probe I X  with the Pitot nose are shown on figure 12 (c). 

Probe I X  was also tested at  M, = 1-48) 2-30 and 3.00 in the 2ft  Supersonic 
Gasdynamics Facility located a t  Wright-Patterson Air Force Base (Bauer 1969). 
Figure 13 shows Cp, results at M, = 1.48 and 3.00; at N, = 2-30 intermediate 
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results were obtained. These results indicate only a slight increase in the sen- 
sitivity of Cpl to a and p as M, increases. 

(4 2o 1 a (degrees) 

-20 L -20 L 

FIGURE 14. Lines of constant C,, a t  M = 0.2. (a )  Probe X with round nose. ( b )  Probe X 
with Pitot nose. ( c )  Probe X I  with round nose. (d )  Probe X I  with Pitot nose. CDl:  A, 
-0.0025; 0, -0.005; 0, -0.01; V, -0.02; 0 ,  +0.004. 

After the results in figure 12 had been obtained, the question arose as to whether 
a probe could be designed with less pitch sensitivity at  the possible expense of 
greater sensitivity to yaw. Such a probe might find application as an aircraft 
static pressure sensor where yaw insensitivity is not as important as pitch 
insensitivity. This question resulted in the geometric design and construction 
of probes X and XI. The shapes were chosen in the hope that separation would 
be delayed to larger angles of attack than on probe IX at the expense of some 
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loss in yaw insensitivity. The results of probe X and XI testing at  M, = 0.2 are 
shown on figure 14. 

The probe X data may be compared with the similar data for probe I X  on 
figure 12. For the rounded nose, the probe X is more sensitive to a and /3 than 
is probe IX. For the Pitot nose probe X is less sensitive than I X  to a, but with 
respect to /3 I X  is less sensitive than X. These Pitot nose results correspond to 
the results anticipated because of the probe geometries. 

For probe XI  the geometric change again results in a smaller sensitivity to a 
and a greater sensitivity to /3 than was the case for probe IX;  this is true for both 
the Pitot and the rounded nose cases. 

6. Conclusions 
It has been shown that static pressure probes can be designed to reduce sen- 

sitivity to pitch and yaw by proper contouring of the probe cross-sections and 
by correct location of the pressure holes. If the probe is to operate at transonic 
and supersonic speeds it must be slender, but if the probe is limited to the lower 
subsonic speed range the probe may be blunt with the possible advantage of a 
further decrease in yaw and pitch sensitivity. 

The authors wish to thank the Air Force Flight Dynamics Laboratory for help 
with tunnel testing on a co-operative programme administered by Mr Herbert 
A. Hutchinson, and they are appreciative of the support of the Douglas Aircraft 
Company through its independent research and development programme. 
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Note added in proof. Recently the authors have studied the family of probe 
cross-section shapes defined by the polar equation rlR = 1 -asin2 40, so that 
s = 8 and the figure is a ‘rounded octagon,. The member of this family having 
a = 0.085 is properly indented so that a probe with the cross-section would 
have cp = 0 according to potential flow calculations. 

Whether or not a real probe using this section is superior to the rounded 
square shape is not clear; in one case the adverse pressure gradients to be 
traversed by the boundary-layer flows are about as severe as in the other case. 


